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A New MRTD Scheme Based on Coifman Scaling
Functions for the Solution of Scattering Problems
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Abstract—This letter describes a new multiresolution time-do- ¢(z) with the order2/N has the following unique vanishing
main scheme which is developed based on Coifman compactlymoment character:
supported scaling functions with some number of vanishing
moments. The highly linear dispersion properties of this scheme
are investigated and the two-dimensional and three-dimensional
scattering problems are analyzed in order to demonstrate the
advantages of this scheme over conventional finite difference and
time-domain scheme with respect to memory requirements and
computing time.

/ zP¢ - dx =0, p=12,...,2N -1

/O:od)-da: =1. 1)

Index Terms—Coifman scaling functions, finite-difference
time-domain method (FDTD), multiresolution time-domain
analysis (MRTD).

So, ¢(x) exhibits the Diracs-like sampling property
for a smooth function f(z) under L? norm, that is
S22 f@)g(x) de = f(0).
Using the set of Coifman scaling functions in space and pulse
. ) . . functions in time, as the expansion and test functions [6], the
T HE FINITE difference time-domain (FDTD) method iSgjerkin method is applied to discretify Maxwell's equations
a powerful numerical technique in electromagnetic fielg, perfectly matched layer (PML) [1]. The following MRTD

computation [1]; however, it suffers from some limitationSgpeme hased on Coifman scaling functions can be obtained:
such as the numerical dispersion. To restrain this dispersion

for electrically large objects, fineness cells are required, which
takes more computer resources and longer computing time.
Some development had been made to overcome this limitation 6N —1

such as high-order FDTD schemes [2]. In recent years, the Z a(l)~HZ|?J:((11/22))7j+(1/2)_17k
development of wavelet provides a new method to solve such I=2—G6N

. INTRODUCTION

Euylivy2, ik = 1) BayliTi oy, 0wt e2w)

problems [3]. The multiresolution time-domain schemes based (2.1)
on Battle-Lemarie wavelet functions [4], Daubechies wavelet B B g -1
functions [5], and their scaling functions, have been studied and -’fZ|vi+(1/2),j, r=c1(z) mz|i+(1/2):j7 r—e2(2)
show highly linear dispersion characteristics than convention 6N—1
; ; : i ion time-do- n—(1/2)
Yee_ S schemg did. In this paper, a new mult|resol_ut|on time (_jo Z a(l)'Hy|i+(1/2),j, B (L/2)—t
main analysis (MRTD) scheme based on Coifman scaling 1=9_6N
functions is derived. In comparison with all of the wavelet (2.2)
and scaling functions used in MRTD schemes available, the N o
Coifman scaling function has its unique Dirédike sampling Eyolil jrayo,n = al(z) By i, 5+(1/2), ()
property. Therefore, in this MRTD scheme, it is more easy 6N_1
to deal with the connection condition and reconstruct the Z a(l)-Ho |72 o
electromagnetic field using the obtained coefficients. =9 6N LI A/2), k)
(2.3)
Il. NEw MRTD ScCHEME Byl (2)- B2 ()
i i ; yxli, j4+(1/2), k — C1\X) Lyz|; —C2l X
The Coifman scaling function has been successfully em- vl ) L HA/2), b
ployed in moment methods (MM) to solve electromagnetic 6N 1
. . . . ; . Z a(l)-H»|n_(l/2)
field integral equations. The set of Coifman scaling functions Zli4(1/2)—1,54+(1/2), k
{¢(x —1)|¢ € integert are complete and orthonormal functions. I=2-6N 2.4)
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where

(i) = 26 — At - gy (i) = 2A¢
W =5 ¥ At-op YT AR+ At oy)

(6) = 2u — At - of (&) = 2At
AT ator MY T At At-or)

i = z,9, z, ande, p, 0;, ando} are the permittivity, perme

ability, electric conductivity, and magnetic loss of the mediu
respectively. A¢ and A represent the time and space dis

cretization intervals, respectivelf,[?, , » J o Eyl? 1000

n—(1/2) n— 1/2)
E.[} k+1/2' Heli il o kvryze Huligis w2 @nd
H. |- are the unknown coefficients in electromag-

zlit1/2 j+1/2,k
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TABLE |

COEFFICIENTSa(!)
! | Coif4 Coif8
1]-131176 | -1.30666
2 10.15757 0.16494
3 1-0.04383 | -0.06042
4 | 0.00982 0.02429
51-0.00124 | -0.00857
6 | 0.00005 0.00243
7 | NA -0.00053
8 |NA 0.00009

8
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Fig. 1. Variation of the numerical phase velocityvith grid size.
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¢(x). a(l) can be obtained by numerical integrals. Sigi¢e)

is compactly supported and has some numbers of vanishing
moments, the number af!) is finite anda(l) decays quickly
when || becomes larger. Table | illustrateg!) related to
¢(z) with 4-order and 8-order, where(l) with | < 0 can be
obtained by the symmetry relatianil) = —a(1 — 1), which are

not listed in the Table. In the following examples, the Coifman
scaling function with 4-order is used.

As ¢(x) has the Diracs-like sampling property, all those un-
known coefficients in (2.1)—(2.12) can be taken as the samples
of the relative continuous field components in space, as well
as in time. By giving the initial value of the field, these coeffi-
cients can be obtained iteratively. On the other hand, when we
need to find out the incident field such Bg, mc|?+(1/2)7 ;i near
the connection interface, which divides the computation region
into total-field region and scattered-field region, no numerical
integral, including continuous., ;,..(x, ¥, z, t), is needed, be-
cause we can take the samplesif ;..(x, ¥, z, t) at point

(6 + 1/2)A, A, kA, nAt] asE,. 1nc|z+1/2 . This makes

the (2.1)—(2.12) more easy to use. Note that |f electromagnetic
field components are expanded by pulse functions, both in space
and time, using the Galerkin method, the Yee's FDTD scheme
can be achieved with(0) = 1, a(1) = —1, anda(l) = 0 for
otherl!.

Fig. 1(a) and (b) shows the variation of the numerical phase
velocity v with grid size for conventional FDTD scheme and this
MRTD scheme whei@ = 0° andf = 45°, respectively. Here,
the incident wave is a TE plane wave travelling in free-space

~ with the field component&,,, E,, andH._, 6 is the propagation
rgngle with respect to the positiveaxis,c- At/A = 1/4, and:is

Sthe free- -pace speed of light. It can be observed from the figures

that

1) the phase velocity error is getting larger witea 0° than
whené = 45°, for both FDTD and MRTD schemes;

netic field expansion equations. They can be split into two 2) the numerical phase velocity in MRTD is greater tkan

subcomponents as in equations (2.1)—(2.22).is the order of

while it is less thart in FDTD;
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b TABLE I
CPU TiME, THE NUMBER OF GRIDS AND THE ERROR FORCYLINDERS

Perimeter of the MRTD FDTD
cylinder 164 244 321 164 242 324
Number of grids | 17424 | 20 164 | 23 104 | 48400 | 67 600 | 90 000
CPU time(Sec.) | 126.38 | 160.49 | 196.52 | 222.06 | 299.89 | 406.17
Relative error(%) 8.65 9.37 11.45 5.16 5.91 7.18

Fig. 2. Scatters and incident wave.

TABLE Il
- MRTD MA=5e FDTD MA=5——FDTD MA=10 CPU TiME, THE NUMBER OF GRIDS AND THE ERROR FOR THECUBE

12

g Number of grids | CPU time(Min.) | Relative error(%)

5 MRTD 343 000 1083 83

g FDTD 1560 896 1963 )

°

] . : .

2 cube in Table Ill, where the relative error refers to the magnetic

S field error shown in Fig. 3(a) between FDTD and MRTD. We

S can see that for the same scatter, MRTD uses less grids than
FDTD in achieving the same accuracy and MRTD reduces the

Fig. 3. Magnitude of the magnetic field. computing time, as well.
3) in all, the phase velocity error in MRTD is less than that IV. CONCLUSION

in FDTD. So, the grid resolutions in MRTD can be more A new MRTD scheme based on Coifman scaling functions
coarse. is derived in this paper. Because of the vanishing moment and
the compact support characteristics of the Coifman scaling

[ll. NUMERICAL EXAMPLES function, the MRTD scheme is easier to use than other MRTD

The performance of the MRTD is examined using a corschemes. Through numerical examinations, it is shown that
ducting cube and square cylinders, where the scatters and f#fe "ew MRTD has highly linear dispersion characteristics
incident wave are shown in Fig. 2(a) and (b). In following exanfNd can reduce memory requirements and computing time in
ples,cAt/A is 1/4 and the dimension of scatters are uniformegPMmparison to the conventional FDTD method. It should be
by the wavelength of the incident wave The incident waves Noted that, as discussed in many papers about MRTD [4], [3],
are sinusoidal plane waves. MRTD schemes have somewhat less stability than conventional

Fig. 3(a) illustrates the magnitude of the magnetic field whidiP TD- But, this does not discount the MRTD performance as
is parallel to the linaubed, as shown in Fig. 2(a). The linghed  SNOWN in above examples.
is in the center of the cube with respecttaxis and\/10 away
from the four surfaces of the cube, which isloA x 1.2 x REFERENCES
1.2). Fig. 3(b) shows the magnitude of magnetic field, which [1] A. Taflove, Computational Electrodynamics—The Finite-Difference
is A\/10 away from the cylinder, where the square cylinder is of _Time-Domain Methad Norwood, MA: Artech House, 1995.

.. . T. Deveze, L. Beaulie, and W. Tabbara, “A fourth order scheme for the
8A x 8. We can S.ee Fhat the magnetic field error is larger for FDTD algorithm applied to Maxwell equations,” IREE A&P Soc. Int.
FDTD when the grid size becomes large because of the numer-  Symp. Dig. Chicago, IL, July 1992, pp. 346-349.
ical dispersion. While for MRTD, the solution still agrees well [3] W- Xingchang, "Application of wavelet analysis to computational elec-
with that obtained by EDTD with fin id hen th id tromagnetics,” Ph.D. dissertation, Xidian Univ., Xi'an, P.R. China, Mar.

jith t y eness grids when the gri 2001,
Size Is Iarge. [4] M. Krumpholz and L. P. B. Katechi, “MRTD: New time-domain

Table Il shows the CPU time, the number of grids, and the schemes based on multiresolution analysiEEE Trans. Microwave
error for cylinders usiljg two different methods: MRTD with 5 \T(_h\e}\(,)_rycﬁicohﬁ\g’(‘)lfi’,,.ppLéSe?SEjﬁ(’.A,g_r' Fle?ieélq mWavelet-Galerkin
A/A = 5and FDTD withA/A = 20, where the relative error scheme of time-dependent inhomogeneous electromagnetic problems,”
refers to the error between the current obtained by MM, and__ 'EEE Microwave Guided Wave Letvol. 9, pp. 297-299, Aug. 1999.
the current obtained by FDTD or MRTD. The results by MRTD [6] X.Weiand C. Liang, “Using the MRTD based on Coifman scaling func-

| ] tions to solve the problem of scatterin\CTA Electronica Sinige2001,
with A/A = 5 and FDTD withA/A = 10 are compared for the to be published.
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