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A New MRTD Scheme Based on Coifman Scaling
Functions for the Solution of Scattering Problems

Xingchang Wei, Erping Li, Senior Member, IEEE, and Changhong Liang, Senior Member, IEEE

Abstract—This letter describes a new multiresolution time-do-
main scheme which is developed based on Coifman compactly
supported scaling functions with some number of vanishing
moments. The highly linear dispersion properties of this scheme
are investigated and the two-dimensional and three-dimensional
scattering problems are analyzed in order to demonstrate the
advantages of this scheme over conventional finite difference
time-domain scheme with respect to memory requirements and
computing time.

Index Terms—Coifman scaling functions, finite-difference
time-domain method (FDTD), multiresolution time-domain
analysis (MRTD).

I. INTRODUCTION

T HE FINITE difference time-domain (FDTD) method is
a powerful numerical technique in electromagnetic field

computation [1]; however, it suffers from some limitations,
such as the numerical dispersion. To restrain this dispersion
for electrically large objects, fineness cells are required, which
takes more computer resources and longer computing time.
Some development had been made to overcome this limitation
such as high-order FDTD schemes [2]. In recent years, the
development of wavelet provides a new method to solve such
problems [3]. The multiresolution time-domain schemes based
on Battle–Lemarie wavelet functions [4], Daubechies wavelet
functions [5], and their scaling functions, have been studied and
show highly linear dispersion characteristics than convention
Yee’s scheme did. In this paper, a new multiresolution time-do-
main analysis (MRTD) scheme based on Coifman scaling
functions is derived. In comparison with all of the wavelet
and scaling functions used in MRTD schemes available, the
Coifman scaling function has its unique Dirac--like sampling
property. Therefore, in this MRTD scheme, it is more easy
to deal with the connection condition and reconstruct the
electromagnetic field using the obtained coefficients.

II. NEW MRTD SCHEME

The Coifman scaling function has been successfully em-
ployed in moment methods (MM) to solve electromagnetic
field integral equations. The set of Coifman scaling functions

integer are complete and orthonormal functions.
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with the order has the following unique vanishing
moment character:

and

(1)

So, exhibits the Dirac--like sampling property
for a smooth function under norm, that is

.
Using the set of Coifman scaling functions in space and pulse

functions in time, as the expansion and test functions [6], the
Galerkin method is applied to discretify Maxwell’s equations
in perfectly matched layer (PML) [1]. The following MRTD
scheme based on Coifman scaling functions can be obtained:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where

, , , and , , , and are the permittivity, perme-
ability, electric conductivity, and magnetic loss of the medium
respectively. and represent the time and space dis-
cretization intervals, respectively. , ,

, , , and

are the unknown coefficients in electromag-
netic field expansion equations. They can be split into two
subcomponents as in equations (2.1)–(2.12).is the order of

TABLE I
COEFFICIENTSa(l)

(a) (b)

Fig. 1. Variation of the numerical phase velocity~v with grid size.

. can be obtained by numerical integrals. Since
is compactly supported and has some numbers of vanishing
moments, the number of is finite and decays quickly
when becomes larger. Table I illustrates related to

with 4-order and 8-order, where, with can be
obtained by the symmetry relation , which are
not listed in the Table. In the following examples, the Coifman
scaling function with 4-order is used.

As has the Dirac--like sampling property, all those un-
known coefficients in (2.1)–(2.12) can be taken as the samples
of the relative continuous field components in space, as well
as in time. By giving the initial value of the field, these coeffi-
cients can be obtained iteratively. On the other hand, when we
need to find out the incident field such as near
the connection interface, which divides the computation region
into total-field region and scattered-field region, no numerical
integral, including continuous , is needed, be-
cause we can take the samples of at point
[ ] as . This makes
the (2.1)–(2.12) more easy to use. Note that if electromagnetic
field components are expanded by pulse functions, both in space
and time, using the Galerkin method, the Yee’s FDTD scheme
can be achieved with , , and for
other .

Fig. 1(a) and (b) shows the variation of the numerical phase
velocity with grid size for conventional FDTD scheme and this
MRTD scheme when 0 and 45 , respectively. Here,
the incident wave is a TE plane wave travelling in free-space
with the field components , , and , is the propagation
angle with respect to the positive-axis, 1/4, and is
the free-pace speed of light. It can be observed from the figures
that

1) the phase velocity error is getting larger when 0 than
when 45 , for both FDTD and MRTD schemes;

2) the numerical phase velocity in MRTD is greater than,
while it is less than in FDTD;
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Fig. 2. Scatters and incident wave.

Fig. 3. Magnitude of the magnetic field.

3) in all, the phase velocity error in MRTD is less than that
in FDTD. So, the grid resolutions in MRTD can be more
coarse.

III. N UMERICAL EXAMPLES

The performance of the MRTD is examined using a con-
ducting cube and square cylinders, where the scatters and the
incident wave are shown in Fig. 2(a) and (b). In following exam-
ples, is 1/4 and the dimension of scatters are uniformed
by the wavelength of the incident wave. The incident waves
are sinusoidal plane waves.

Fig. 3(a) illustrates the magnitude of the magnetic field which
is parallel to the line , as shown in Fig. 2(a). The line
is in the center of the cube with respect to-axis and away
from the four surfaces of the cube, which is of

. Fig. 3(b) shows the magnitude of magnetic field, which
is away from the cylinder, where the square cylinder is of

. We can see that the magnetic field error is larger for
FDTD when the grid size becomes large because of the numer-
ical dispersion. While for MRTD, the solution still agrees well
with that obtained by FDTD with fineness grids when the grid
size is large.

Table II shows the CPU time, the number of grids, and the
error for cylinders using two different methods: MRTD with

and FDTD with , where the relative error
refers to the error between the current obtained by MM, and
the current obtained by FDTD or MRTD. The results by MRTD
with and FDTD with are compared for the

TABLE II
CPU TIME, THE NUMBER OF GRIDS AND THE ERROR FORCYLINDERS

TABLE III
CPU TIME, THE NUMBER OFGRIDS AND THE ERROR FOR THECUBE

cube in Table III, where the relative error refers to the magnetic
field error shown in Fig. 3(a) between FDTD and MRTD. We
can see that for the same scatter, MRTD uses less grids than
FDTD in achieving the same accuracy and MRTD reduces the
computing time, as well.

IV. CONCLUSION

A new MRTD scheme based on Coifman scaling functions
is derived in this paper. Because of the vanishing moment and
the compact support characteristics of the Coifman scaling
function, the MRTD scheme is easier to use than other MRTD
schemes. Through numerical examinations, it is shown that
the new MRTD has highly linear dispersion characteristics
and can reduce memory requirements and computing time in
comparison to the conventional FDTD method. It should be
noted that, as discussed in many papers about MRTD [4], [5],
MRTD schemes have somewhat less stability than conventional
FDTD. But, this does not discount the MRTD performance as
shown in above examples.
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